How to Compute with DNA
نویسندگان
چکیده
This paper addresses two main aspects of DNA computing research: DNA computing in vitro and in vivo. We first present a model of DNA computation developed in [5]: the circular insertion/deletion system. We review the result obtained in [5] stating that this system has the computational power of a Turing machine, and present the outcome of a molecular biology laboratory experiment from [5] that implements a small instance of such a system. This shows that rewriting systems of the circular insertion/deletion type are viable alternatives in DNA computation in vitro. In the second half of the paper we address DNA computing in vivo by presenting a model proposed in [17] and developed in [18] for the homologous recombinations that take place during gene rearrangement in ciliates. Such a model has universal computational power which indicates that, in principle, some unicellular organisms may have the capacity to perform any computation carried out by an electronic
منابع مشابه
WZ factorization via Abay-Broyden-Spedicato algorithms
Classes of Abaffy-Broyden-Spedicato (ABS) methods have been introduced for solving linear systems of equations. The algorithms are powerful methods for developing matrix factorizations and many fundamental numerical linear algebra processes. Here, we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW factorizations of a nonsingular matrix as well as...
متن کاملCustomer Relationship Termination Problem for Beta-Geometric/Beta-Binomial Model of Customer Behavior
We deal with the relationship termination problem in the context of individual-level customer relationship management (CRM) and use a Markov decision process to determine the most appropriate occasion for termination of the relationship with a seemingly unprofitable customer. As a particular case, the beta-geometric/beta-binomial model is considered as the basis to define customer beha...
متن کاملScaling down DNA circuits with competitive neural networks.
DNA has proved to be an exquisite substrate to compute at the molecular scale. However, nonlinear computations (such as amplification, comparison or restoration of signals) remain costly in term of strands and are prone to leak. Kim et al. showed how competition for an enzymatic resource could be exploited in hybrid DNA/enzyme circuits to compute a powerful nonlinear primitive: the winner-take-...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملGetting to Know Wolfram|Alpha Computational Knowledge Engine and Its Applications in Biomedical Sciences
Wolfram|Alpha Computational Knowledge Engine software, despite all internet search engines, tries to provide the the best answer for a question or compute an equation in the most correct way based on the current knowledge. Therefore, given the unique characteristic of Wolfram|Alpha and its vast applications, the aim of the present article is to familiarize the biomedical scientists with...
متن کاملممانهای گرانشی خورشید
Gravitational multipole moments of the Sun are still poorly known. Theoretically, the difficulty is mainly due to the differential rotation for which the velocity rate varies both on the surface and with the depth. From an observational point of view, the multipole moments cannot be directly measured. However, recent progresses have been made proving the existence of a strong radial different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999